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The equilibrium spectra of two-dimensional numerical model flows are studied 
from the viewpoint of microcanonical ensemble averages. The method leads to 
accurate numerical verification of the ergodic, or mixing, hypothesis in the case 
of systems constrained to a finite number of degrees of freedom. 

1. Introduction 
It is well known that turbulence theory is somewhat outside the scope of 

classical statistical mechanics, primarily because it involves systems with an 
infinite number of degrees of freedom in the limit of vanishing viscosity. Never- 
theless, this tool can in fact be successful in providing some insight into the 
dynamic processes of turbulence (Onsager 1949; Hraichnan 1967). For instance, 
the statistical properties of inviscid model flows constrained to a finite number of 
degrees of freedom can be thoroughly investigated by means of statistical 
mechanics. The knowledge we are able to gain in this manner is of primary 
interest to anyone involved in numerical simulation of the Navier-Stokes equa- 
tions. Apart from a better understanding of the model’s behaviour, it  provides 
an explanation for the discrepancy between the dynamics of numerical models 
and real-fluid dynamics, described by observations or by theories of turbulence. 

The typical approach of classical statistical mechanics is to explain the 
statistical behaviour of a system in terms of its structural properties, the most 
common of these being energy conservation. A similar standpoint has been 
recognized in the recent trends of turbulence theory, as emphasized by the use of 
stochastic models, such as the test-field model (Kraichnan 1971 a )  or the MRCM 
model (Frisch, Lesieur & Brissaud 1974). 

Now, the dynamics of three-dimensional flow appear to be essentially governed 
by the existence of a single quadratic invariant: the total kinetic energy of the 
flow. This property should thus be built into any numerical (truncated) model 
of the flow, in order to preserve the structure of nonlinear interactions. It may 
then be shown by statistical mechanics, and well verified in actual simulations, 
that an inviscid finite system evolves towards an equipartition of energy among 
all Fourier modes (Orszag 1970). However, the situation is quite different for real 
flows, which evolve towards the well-known k-e (Kolmogorov) energy spectrum, 
characterized by an energy cascade towards higher wavenumbers. We thus see 
a significant alteration in the statistical properties of the system, due only to the 

43 F L M  69 



674 C .  Basdevant and R. Sadourny 

existence of a truncation. It is clear that the infinite number of degrees of freedom 
in the three-dimensional Navier-Stokes equations is a most important structural 
property, which must however be violated by numerical simulation. 

The situation is quite different in two dimensions since the dynamics of the 
Row are then governed by the simultaneous conservation of two invariant 
quadratic forms: the total enstrophy and the total energy of the flow. Following 
the same considerations as before, both properties should be built into the 
numerical model, in order to get the proper structure of nonlinear interactions. 
In  this case, significant discrepancies between the statistical properties of real 
flows and their truncated models have been emphasized by Kraichnan (1971 6) 
and investigated numerically by Fox & Orszag (1973), Deem & Zabusky (1971) 
and Lilly (1969). This means that in two dimensions, as well as in three, the 
t,runcation brings about a fundamental alteration in the structure of the problem. 

Our purpose here is to derive analytical expressions for the equilibrium spectra 
in the inviscid truncated case, from the viewpoint of microcanonical ensemble 
averages. Various numerical experiments will show actual convergence of time 
averages towards the theoretical expressions. 

2. Definition of the truncated fluid-dynamic problem 
A two-dimensional non-divergent flow is entirely described by a single scalar 

function of space and time (the stream function), which we denote by @(x, t) .  In  
the inviscid case, the governing equation reads 

( 1 )  w @ ) / a t  + J(?h, A@) = 0, 

where the symbol J refers to the Jacobian operator. 
In  the case of a pure initial-value probIem with twofold periodicity of the 

stream function, this equation can be written in spectral form using the Fourier 
series $(k, t ) .  In  the truncated problem, the Fourier series is replaced by a finite 
sum restricted to N vector modes belonging to a finite array D, and the generic 
form of the governing equation reads 

In  this equation, n ( p ,  q) is a function depending on the choice of the truncated 
Jacobian J ,  : a ( p ,  q) = p A q if J, is computed in spectral form. P and K are 
‘pseudo-wavenumbers’ related to eigenvalues - P2 and - K 2  of the truncated 
Laplacian A*, corresponding to eigenfunctions e-ip.x and e-ik.x: P = IpI and 
K = Ikl if A* is computed in spectral form. 

We shall restrict our attention to inviscid truncated models conserving exactly 
the enstrophy as well as the energy of the flow, in order to get the correct structure 
for nonlinear interactions. In  fact, this is equivalent to imposing for any given 
wave-vectcr triad (kl, k,, k,) with k, + k, + k, = 0 

C K: a(k,, kj) = X li; K ;  “(ki, kj) = 0, 

where the summations are taken over all permutations (i,j, 1) of (1 ,2 ,3 ) .  These 
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properties are straightforward in the case of direct truncation in Fourier space. 
They may also be verified when J* is a finite-difference Jacobian belonging to the 
class initially derived by Arakawa (1966). 

3. The ergodic hypothesis 
If the truncated system is defined by N real time-dependent variables, the 

construction of the corresponding phase space is well known. The set of wave 
vectors is split into three parts: 

D = Dl+D2+D3,  

where D, is the subset corresponding to real values of $ and D, and D, are two 
subsets chosen in such a way that, for any k,  E D,, there is a k,  E D, such that 
$(k3, t )  is the complex conjugate of $(k,, t ) .  The co-ordinates in phase space are 
chosen as follows: 2-*K$(k,t) if kED,, 

y (k , t )  = KRe$(k , t )  if kED,, i KIm$(k , t )  if kED3. 

It has been shown (cf. Orszag 1970) that the motion in this phase space is non- 
divergent. This can be seen at  once from the generic form of (2), since for any 
proper Jacobian, whether truncated or not, 

a(p,q) = 0 when p = 0 or q = 0, 

which implies that d$(k,t)/dt is independent of $(k , t ) .  This in turn implies, 
obviously, that dy(k, t ) /d t  is independent of y(k,  t ) ,  so that 

We can then apply Liouville’s theorem, asserting that the natural motion in 
phase space conserves the measure of any measurable set of states. 

Starting from any initial state with energy E and enstrophy 2, the trajectory 
of M(t) stays on the ( N -  2)-dimensional intersection X of the hypersphere 

with the hyperellipsoid C K2y2(k, t )  = 2. 
k e D  

(4) 

When X is considered together with the measure induced by the Lebesgue 
measure in the phase space, (2) defines a stochastic process on X. Since the 
problem is a pure initial-value problem, a consequence of Liouville’s theorem is 
that  this stochastic process is stationary. We shall be interested only in the 
ergodic properties of the phase function y2(k) .  Composition of this phase function 
with the stochastic process on S defines a stationary stochastic process y2(k, t )  
with time averages 
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The random function U(k, T )  is the average energy in mode k within a portion of 
the trajectory. The process y2(k, t )  will be ergodic if U(k, T) converges towards 
the expectation of y2(k) as T-too. If we look for convergence in the quadratic 
mean, we may write, denoting expectations by square brackets and defining 

U(k) = [Y2(k)l, T T  

[( U(k, T) - U(k))2] = 1 1 Rk(t, t ’ )  dtdt’, 
0 0  

where Rk(t, t‘) is the time covariance: 

Rk(t ,  t ’ )  = [(y2(k, t ,  - [y2(k, t ) l )  (y2(k, t’) - [y2(k, t’)l)l. 
Hence, convergence of U(k, 5”) towards U(k) in the quadratic mean is equivalent 
to 

which means that two successive states of the system become uncorrelated as the 
time lag becomes large enough. Further, the first theorem of Birkhoff (see for 
instance Khinchin 1949, p. 19) states that there is an almost sure limit for 
U(k, T) on S,  since the process is stationary. Then the ‘mixing’ hypothesis (5) 
implies convergence of the time average to the expectation U(k) not only in the 
quadratic mean, but even almost everywhere on S. 

We intend now to give experimental support for the mixing hypothesis fist 
by computing the expectations U(k) in phase space, and then by computing the 
time average of numerical solutions of (2). 

4. Computation of the expected energy spectrum 
In  order to simplify the problem, we first notice that k does not appear 

explicitly, except as an index or through the function K. Hence U(k) is in fact 
a function U ( K )  only. We can define the order of multiplicity of a ‘mode’ K as 
the number of original vector modes k which correspond to this particular value 
of K .  We shall sort all distinct values of K and refer to them from now on as 
K, < K, < ... < Kn. We have of course 

n 

i= l  
N = ai, 

where ai is the order of multiplicity of Ki. Accordingly, U ( S i )  is conveniently 
denoted by q. Further, we shall call the average ‘pseudo-wavenumber ’ K with 
respect to the energy distribution, in short Kz = Z / E  [see (3) and (4)]. The 
analytical expression for the expected energy spectrum is straightforward, using 
the measure induced on S by the Lebesgue measure. Taking into account the 
internal symmetries of the problem, the expression for Ui reads 
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K 
FIGURE 1. Theoretical spectra for a 64 x 64 grid; E = 3.141 (log-log scale). 

( a )  Iz = 2.1. ( b )  K = 11. 
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(7) 

together with Y,, Y2 > 0. 
Although (6) is an exact analytical form, it leads to exceedingly long calcula- 

tions owing to the large number of variables involved. In  the slightly restrictive 
case where p, is even, one can derive upper and lower bounds for Ui, which lead 
to accurate approximations in several important cases. These bounds are given 
in appendix A for the case p1 = p2 = 2, which corresponds to the numerical 
experiments. The estimate (A 4) is extremely accurate when E is close to  either 
K ,  or K,, for instance in the cases shown in figure 1. It is not as good if h’ is near 
the middle of the interval [K,, K,]. Of course, we are primarily interested in the 
asymptotic behaviour of the spectrum as n --f 00. The reader is invited to refer to 
appendix B for the corresponding derivations. We just state the main results 
here. 

For a pseudo-wavenumber distribution K,, K,, ..., K,  with orders of multi- 
plicity al, a2, . . . , a,, the expected energy spectrum of a system possessing 
N degrees of freedom, a given energy E and a given enstrophy E2E is asympto- 
tically equivalent to 
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FIGURE 2. Theoretical spectra for E = 3.141 and R = 3-5 (log-log scale). 
(a )  16 x 16 grid. ( b )  64 x 64 grid. 

when k, --f co as n 3 00. That is, when we include higher and higher modes in the 
system, all the energy flows back into the lowest mode, with equipartition of 
enstrophy in the higher Fourier modes (figure 2). This peculiar behaviour may 
account for the insufficient magnitude of the eddy kinetic energy relative to the 
mean zonal kinetic energy in numerical models of the general circulation of the 
atmosphere (see for instance Somerville et al. 1973). It is thus a simple 
consequence of truncation itself that energy is not distributed in an inviscid 
numerical model as it is in real flows: an accurate statistical representation of 
subgrid scale motions is thus essential for recovering the real spectral properties 
of geophysical flows. 

If, instead of adding higher modes to the system, we keep Kn fixed and make 
n+oo by adding lower modes, so that K,+O, then the asymptotic energy 
spectrum has the following form: 

That is, in that case all the enstrophy flows up into the highest mode, and there 
is equipartition of energy in the lower Fourier modes, 

It should be kept in mind that U(K,) is the two-dimensional energy spectrum. 
The usual one-dimensional spectrum E ( K )  is not well formulated in the case of 
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a discrete Fourier space. However, we may define an approximate spectrum E ( K )  
proportional to K U ( K ) .  Expression (8) leads to an asymptotic form of E ( K )  
proportional to K-l in the large wavenumber limit, while (9) yields a spectrum 
E ( K )  proportional to K in the small wavenumber limit. 

These approximate forms are consistent with the asymptotic equilibrium 
states U ( K )  = a/(b + K 2 )  

obtained by Kraichnan (1967) from the viewpoint of macrocanonical ensemble 
averages. Indeed, Fox & Orszag (1973) showed that, energy and enstrophy 
being given, it is always possible to find unique real values of a and b such that 
(10) is a possible state of the system. Further, one can show that, when the 
number of degrees of freedom increases to infinity, b has the following limit: 

-K: as K ,  -too with Kl fixed, 

- h-: as K , + O  with K ,  fixed. 
limb = 

However, figure 4 shows that this asymptotic form is not a good approximation 
of the spectrum in the case of low resolution. 

5. Numerical experiments 
The validity of the ergodic hypothesis can be tested by performing numerical 

integrations of the inviscid truncated equations: one can then verify whether the 
time averages of the spectral distribution of energy converge towards the 
theoretical values. The experiments were performed for the case of low-order 
systems, where the statistical equilibrium is reached after a reasonable amount 
of computing time. Moreover, the theoretical formulae were found to be accurate 
enough in the low-order case. 

I n  all experiments, we used a truncated Jacobian J defined in finite-difference 
form on a regular triangular grid, conserving both energy and enstrophy 
(Sadourny, Arakawa & Mintz 1968). Rhombic periodicity was assumed along the 
directions of two unit vectors el and e,, with (el, e,) = 37r. I n  some experiments, 
the Laplacian was directly defined in spectral form, leading to pseudo-wave- 
numbers K defined by 

K 2  = #[(k.e,)2+(k.e,)z+(k.e,)2] ( =  lkI2), 

with e3 = - el - e,. In other experiments, the seven-point finite-difference 
Laplacian was used instead, leading to a different definition of K :  

K 2  = ( 8/3d2) [sin, (4dk. el) + sin2 (Bdk. e,) + sin2 (Bdk. e,)] 

(here d is the mesh distance). The isolines of K in the truncated Fourier space, 
giving the corresponding orders of multiplicity of the Fourier modes, are shown 
in figure 3. 

In theory, the equilibrium spectrum is uniquely determined by the energy and 
enstrophy of the initial flow. This property was verified by performing separate 
experiments using widely different initial repartitions of energy: in some cases, 
the initial state was chosen in such a way that only three modes were excited, 
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el el 

FIGURE 3. Isolines of K for an 8 x 8 grid. (a )  For spectral truncation of the Laplacian. 
( 6 )  With the simplest second-order finite-difference Laplacian. 

corresponding to the vertices of two conjugate triangular meshes. This choice 
ensures that all Fourier modes are linear combinations of the initially excited 
modes and can therefore be excited in the further integration of the equations of 
motion, meaning that the trajectory in phase space is not singular, i.e. not con- 
tained in a submanifold of measure zero. In  other cases, the full spectrum was 
excited initially using 

by modulating a random excitation R(k)  by a prescribed function f of the pseudo- 
wavenumber. The time integration scheme was second-order centred (leapfrog) 
with a time average of odd and even solutions every 100 time steps. In  all cases 
there was a slow dissipation of energy and enstrophy due to the time-averaging 
procedure. However, the relative damping was of the order of 10-8 per time step. 
For ergodic time scales of about lo5 steps, this damping can be considered so slow 
that it does not perturb the ergodic properties. 

The first experiment was designed to check the validity of the analytical 
formula (6) in the case of a system of very low order where asymptotic estimates 
such as (10) or (A 4) are far from accurate. The integration was performed on an 
8 x 8 grid, using the finite-difference Laplacian. In  that case, K varies from 0.883 
to 2-426 (arbitrary units). The modes excited a t  t = 0 correspond to 

W? 0) = R(k)f(_k') (11) 

K ,  = 1.633, K ,  = 2, K,  = 2.134, 

the average pseudo-wavenumber being = 1.88. The time averages were com- 
puted over 40 000 time steps. Concurrently, a Monte Carlo method was used to 
compute the phase-space integrals involved in the calculation of the exact 
equilibrium spectrum (6). The two results are undistinguishable on figure 4, 
proving accurate convergence of the time averages to theoretical values. The 
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validity of the ergodic hypothesis in this particular case involving a low-order 
system is thus verified. The corresponding energy distribution of the form 
U(k) = u/(b + IT2)  based on macrocanonical ensemble averages is significantly 
inaccurate in this case (figure 4). 

The second and third experiments were performed on a 16 x 16 grid. The second 
experiment used a spectral Laplacian ( K  = I k J ) .  The wavenumbers extend from 
1 to  8.71. At t = 0, the excited modes correspond to 

hT3 = 2, IT, = 2.64, hr, = 3, 

the average wavenumber being = 2.43. There is also very good agreement 
between the time averages and the expectations after the somewhat longer time 
of 98 000 steps (figure 5 a). In this case, we are close to the asymptotic form, with 
almost all the energy in the first mode and equipartition of enstrophy in the 
higher modes. 

The third experiment used the finite-difference Laplacian on the same grid. 
The pseudo-wavenumber varies from 1.147 to 6.218. The initially excited modes 
are a t  the higher end of the spectrum: 

K,, = 6.102 (two Fourier modes excited), 
K,, = 6.218. 

Figure 5 (b)  shows the agreement between time averages and expectations after 
95 000 steps. We are here closer to the second asymptotic form. 

Finally, a series of experiments was performed using the 16 x 16 grid and 
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FIGURE 4. Verification of the ergodic hypothesis in the case of an 8 x 8 grid. -, exact 
theoretical spectrum obtained from formnla ( 6 ) ,  as well as time-averaged spectrum of the 
numerical solut,ion; ......, approximate equilibrium spectrum obtained from Kraichnan’s 
formula. 
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FIGURE 5. Verification of the convergence of the time-averaged spectrum to the theoretical 
spectrum for a 16 x 16 grid (log-log scale). ( a )  z = 2.43. ( b )  k' = 6.14. -, theoretical 
values; time averages after (a )  98 000 and ( b )  95 000 steps. 



Ergodic properties of models of two-diwhensional turbulence 683 

: A  

h' 

FIQURE 6. Various shapes of the equilibrium spectra (16 x 16 grid) obtained from numerical 
integrations after 40 000 steps (log-log scale). A, value of h'corresponding to each spectrum. 
The scale is omitted; the slope - 2 ,  corresponding to equipartition of enstrophy, isindicated. 

starting from fully excited spectra (1 1) ,  with various forms of the modulating 
functionf(K) allowing widely different values of h': 

( A )  f ( K )  = K ,  h3 = 7.34, 

(B)  f ( K )  = K-l, K = 5.95, 

(6') f ( K )  = K-$, h3 = 5.08, 

(D)  f ( K )  = K-', E = 3-81, 

( E )  f ( K )  = K-3, h3 = 1.57. 

The corresponding time-averaged energy spectra are displayed in figure 6. 
Cases A and E produce equilibrium spectra similar to those already found in the 
third and second experiments (figures 5 b,  a)  with similar orders of magnitude 
for h3. Cases B, C and D produce intermediate shapes. In case B, where we started 
from approximate equipartition of energy, the equilibrium spectrum remains 
close to  exact equipartition. In case D,  where enstrophy is roughly equally 
distributed among the Fourier modes at t = 0,  the time averages show that 
equipartition of enstrophy is maintained. Case C is intermediate between energy 
equipartition and enstrophy equipartition; the time-averaged spectrum evolves 
towards an equilibrium shape where equipartition of energy approximately holds 
among the smaller wavenumbers, while approximate equipartition of enstrophy 
takes place among higher wavenumbers. I n  th.e case of a 16 x 16 grid, Kraichnan's 
formula is accurate enough to describe the equilibrium spectra: all time averages 
reproduced in figure 6 are indeed consistent with (10). 
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6. Conclusion 
Assuming the ‘mixing’ hypothesis only, we have derived an exact analytical 

expression for the time-averaged energy spectrum of inviscid numerical models 
of two-dimensional incompressible flows. This expression is equally valid in 
the case of spectral models and finite-difference models constrained to exact 
energy and enstrophy conservation. Further, it is exact even in the case of a 
small number of degrees of freedom, where the asymptotic formula given by 
Kraichnan, based on macro-canonical ensemble averages, is far from accurate. 
Consequently it allows precise verification of the ergodic hypothesis even in the 
case of a low-order system. It turns out that Kraichnan’s approximation is 
accurate for systems involving 16 x 16 points or more. A disadvantage of the 
present formulation is the absence of simple estimates in the general case. How- 
ever, not only can such simple estimates be given in the particular cases where 
the mean pseudo-wavenumber is close to its minimum or maximum value, but 
upper and lower bounds can be derived in these cases: if the error in the esti- 
mates is known, convergence of the time averages of a numerical solution to the 
analytical expression can be accurately checked. 

The ergodic hypothesis appears to be well verified in all cases investigated here. 
The theoretical spectra as well as the time averages are characterized by a 
tendency towards enstrophy equipartition at higher wavenumbers as long as the 
average wavenumber &7 is not too large. Conversely, a tendency towards energy 
equipartition is observed at  smaller wavenumbers as long as is not too small. 
There is thus a significant difference between the asymptotic behaviour of 
inviscid truncated systems and two-dimensional turbulence, characterized by 
the possibility of both an enstrophy cascade towards higher wavenumbers and 
a reverse energy cascade towards lower wavenumbers in the case of an infinite 
domain (e.g. Kraichnan 1967, 1971b; Lilly 1969; Frisch et al. 1974). By imposing 
zero transfer, truncations act as dams preventing possible cascades and imposing 
corresponding equipartitions ‘upstream ’. The key to more accurate statistical 
behaviour of numerical models is then a proper formulation of the enstrophy 
(or energy) transfer across the barriers imposed by the truncation. Some tenta- 
tive solutions to this problem have already been proposed by Smagorinsky, 
Manabe & Holloway (1965) and Leith (1968, 1972) in the case of models of 
atmospheric flows. 

Appendix A. Calculation of bounds for the theoretical spectrum 
We shall consider only the somewhat restrictive case where p2  is even, which is 

actually the case considered in our experimental computations, described in 8 5 .  
The expression for Ui (i + 2) involves only integrals of the following type: 

We may consider V as the difference V,- V i ,  where V, is defined by (7) with 
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< 0. The integration over ?' is yZ > 0 and T'L is defined by (7) with Y, > 0 and 
now split into integrations over V, and VL, which yields 

I = I, - I;. (A 2) 

Instead of computing I ; ,  it  is more convenient to calculate another integral Il 
over a volume V, defined by (7) with 5 < 0. Then our assumption on pz ensures 
that the integrand has the same sign throughout V,. Hence 

I I L I  G IIll. 

(Notice two simpler cases: if K ,  < ii' < K ,  then I; = 0; if K ,  < ii' < K3 then 
I; = Il.) This yields upper and lower bounds for I :  

4 -  /Ill < I d I,+ (Z(. (A 3) 

It turns out that Il is in most cases extremely small compared with I,, especially 
when the number of modes is large enough, so that we are able to compute I with 
very high accuracy. 

In  practice, we calculate only the integrals involved in C$ for i > 2, the remain- 
ing expectations U, and U, being obtained afterwards by making use of the two 
integral constraints. We define, for i > 2, I(i) ,  Il(i), I,(i) and I;(i) as the integrals 
in which 

yi = pi, j =k 2,  i, 

y< = pi+ 1. 

yj = pj, 
We also define I(O),  I,(O), 12(0) and IL(0) as the same integrals with 

j i 2. 

Expressing (6), (A 1) and (A 2) in this notation, we get 

I I,(i) - IL(i) 
(xi 12(0) -Ih(O)' 

ui = - 

or using (A 3), the approximate form 

We spare the reader rather cumbersome calculations and give at  once the 
expressions for the various integrals which appear in (A 4) for the case p1 = p2 = 2, 
which was studied in our numerical experiments: 

and for i > 2 

12(i) ((R+$)'+F+$)] 

I,(i) = A(pi+ 1) 2 d E  - D c;-- '; ( ( ! P + $ ) 2 + G + $ ) ] ,  
di s [ ::; ( +:) + ( S +  1)  (X+ 2) 
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n di 
S =  3 ( p i + 1 ) + 3 ,  R =  C - ( p i + l ) ,  

i = 3  i = 3  ci 

Appendix B. Asymptotic behaviour of the expected spectra 
We shall first be interested in the asymptotic behaviour of the spectrum when 

K ,  is fixed and K n  -+ co as n + co. In  this case, S 3 co and dnlcn + 1, so that R, T, P 
and G are equivalent to S. Further, if 

S-1 log D -+ log (do/co) < 0, 

> K2 

so that D+O exponentially. (If < K,, I; = 0.) We then have 

A-'12(0) N (do - co),, A-'I,(O) N D(d0 - GO),, 

so that 

co E A4I"(i) ff (pi + 1) - - (do - coy, 
ci S 

a~ 
di s A-'I1(i) N (pi+ 1) 2 - D (do-c0), ,  

c E Eh'Z-K? ui N 2-  N -- (i > 2) .  
ci 2S N h7$-K; 

We need now to study the asymptotic behaviour of U, and U2. From the con- 
straints on energy and enstrophy, we get 

n 

i = 3  
~~CZUZ = cOE- O L ~ C ~ U ~ ,  

or using the notation of appendix A, 
n 

a2c2U2= ( (c,EA-'I,(O) - i = 3  XciA-lIz(i) ) (  - cOEA-1I;(o) - ~ c ~ A - l r ; ( i ) ) ) / A - l ~ ( o ) .  i = 3  

n 

From the inequalities derived in appendix A, we thus get 

n n 

i = 3  i = 3  
coEA-1I;,(O) - s CiAPI;,(i) < c0EA-lI1(O) + C ciA-lIl(i), 

and using the analytic form of I,, we write 

2doco n 
X ciA-'.f,(i) = Ddo - c ~ T - -  (T2+ G )  

i = 3  S "[ S + l  
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The right-hand side is obviously equivalent to D. Further, 

n 3 2d0c0R c i  R2+F]  
c ~ E A - ~ I ~ ( O )  - C ciA-lI2(i) = - c0 E d i  - - 

i = 3  S [ S+1 +mm 
n 
6 - - CoE(do - coy, 
S 

and using the asymptotic behaviour of A-112(0) and A-lII(O), we get 

E g2-K:  UZN L!!!?!?E, -~ 
N Ki-  K:' a2 S c2 

We now calculate U,. Again, from the constraints on energy and enstrophy, 

n 

2=3 
o ~ ~ c Z U ~  = S diaiU,-doE. 

So with the notation of appendix A, 

dJ-112(i) -doEA-1I2(O) 
i = 3  

As in the case of U,, we get a bound for the numerator of the second term: 

1 2 diA-II;( i )  -dOEA-lI~(O) < diA-lI1(i) +d,EA-lI,(O), 
i = 3  I n  i = 3  

and evaluating the sum on the right-hand side gives 

+ (S+ 1) " (S+2) ( T 2 + G ) ( S + l ) ] .  

We see that this term is of the same order of magnitude as D.  On the other hand, 
we have 

It d3 + 2 3 2 (pi + 1)) - do(R2 + F ) ) ]  N E(co - do) (do - c ~ ) ~ .  
i - 3  c: 

Hence using the asymptotic behaviour of I(O), 

1 (Co-do)E E 
a1 c2 a1 

Lastly, we are interested in the asymptotic behaviour of the spectrum when 
Kn is fixed and El -+ 0 as n -+ 00. This will be obtained in the simplest way by 

q N - = -. 
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interchanging energy and enstrophy and considering Kgl  instead of K,  in the 
preceding calculations. Thus, the asymptotic spectrum is in this case 
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